home *** CD-ROM | disk | FTP | other *** search
/ Summit - An Interactive Algebra Journey / Summit, An Interactive Algebra Journey.iso / SUMMIT / UTILS / TESTS / C8S1P.QM < prev    next >
Unknown  |  1996-04-24  |  1.7 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Qt Message (other/qtMessage) ext Unsupported
100% file data default
100% gt2 Kopftext: 'ts3YNNN' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 74 73 33 59 4e 4e 4e 01 | 4e 00 00 01 00 01 00 42 |ts3YNNN.|N......B|
|00000010| 44 59 4e 4e 4e 44 46 72 | 65 64 20 4f 65 66 6c 65 |DYNNNDFr|ed Oefle|
|00000020| 69 6e 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |in......|........|
|00000030| 00 00 00 00 00 79 20 64 | 65 66 61 75 6c 74 20 63 |.....y d|efault c|
|00000040| 6f 6d 6d 65 6e 74 21 00 | 65 73 74 73 00 00 00 00 |omment!.|ests....|
|00000050| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000060| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000080| 00 00 00 00 4d 79 20 64 | 65 66 61 75 6c 74 20 74 |....My d|efault t|
|00000090| 65 73 74 20 74 69 74 6c | 65 00 00 00 00 00 00 00 |est titl|e.......|
|000000a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000000b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000000c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000000d0| 00 00 00 00 43 6c 61 73 | 73 20 74 69 74 6c 65 00 |....Clas|s title.|
|000000e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000000f0| 00 00 73 74 75 64 65 6e | 74 20 74 69 74 6c 65 00 |..studen|t title.|
|00000100| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000110| 00 00 00 00 00 00 00 00 | 00 4e 00 00 00 00 00 00 |........|.N......|
|00000120| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000130| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000140| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000150| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000160| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000170| 22 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |".......|........|
|00000180| 07 00 80 01 00 00 07 00 | 80 02 00 00 07 00 80 03 |........|........|
|00000190| 00 00 07 00 80 04 00 00 | 07 00 80 05 00 00 07 00 |........|........|
|000001a0| 80 00 01 00 07 00 80 01 | 01 00 07 00 80 02 01 00 |........|........|
|000001b0| 07 00 80 03 01 00 07 00 | 80 04 01 00 07 00 80 05 |........|........|
|000001c0| 01 00 07 00 80 00 02 00 | 07 00 80 01 02 00 07 00 |........|........|
|000001d0| 80 02 02 00 07 00 80 03 | 02 00 07 00 80 04 02 00 |........|........|
|000001e0| 07 00 80 05 02 00 07 00 | 80 00 03 00 07 00 80 01 |........|........|
|000001f0| 03 00 07 00 80 02 03 00 | 07 00 80 03 03 00 07 00 |........|........|
|00000200| 80 04 03 00 07 00 80 05 | 03 00 07 00 80 06 03 00 |........|........|
|00000210| 07 00 80 07 03 00 07 00 | 80 00 04 00 07 00 80 01 |........|........|
|00000220| 04 00 07 00 80 02 04 00 | 07 00 80 03 04 00 07 00 |........|........|
|00000230| 80 04 04 00 07 00 80 05 | 04 00 07 00 80 06 04 00 |........|........|
|00000240| 07 00 80 07 04 00 07 00 | 80 31 2e 20 46 69 6e 64 |........|.1. Find|
|00000250| 69 6e 67 20 53 71 75 61 | 72 65 20 52 6f 6f 74 73 |ing Squa|re Roots|
|00000260| 0d 0d 31 2e 20 46 69 6e | 64 69 6e 67 20 53 71 75 |..1. Fin|ding Squ|
|00000270| 61 72 65 20 52 6f 6f 74 | 73 0d 0d 31 2e 20 46 69 |are Root|s..1. Fi|
|00000280| 6e 64 69 6e 67 20 53 71 | 75 61 72 65 20 52 6f 6f |nding Sq|uare Roo|
|00000290| 74 73 0d 0d 31 2e 20 46 | 69 6e 64 69 6e 67 20 53 |ts..1. F|inding S|
|000002a0| 71 75 61 72 65 20 52 6f | 6f 74 73 0d 0d 31 2e 20 |quare Ro|ots..1. |
|000002b0| 46 69 6e 64 69 6e 67 20 | 53 71 75 61 72 65 20 52 |Finding |Square R|
|000002c0| 6f 6f 74 73 0d 0d 31 2e | 20 46 69 6e 64 69 6e 67 |oots..1.| Finding|
|000002d0| 20 53 71 75 61 72 65 20 | 52 6f 6f 74 73 0d 0d 32 | Square |Roots..2|
|000002e0| 2e 20 52 61 74 69 6f 6e | 61 6c 20 61 6e 64 20 49 |. Ration|al and I|
|000002f0| 72 72 61 74 69 6f 6e 61 | 6c 20 53 71 75 61 72 65 |rrationa|l Square|
|00000300| 20 52 6f 6f 74 73 0d 0d | 32 2e 20 52 61 74 69 6f | Roots..|2. Ratio|
|00000310| 6e 61 6c 20 61 6e 64 20 | 49 72 72 61 74 69 6f 6e |nal and |Irration|
|00000320| 61 6c 20 53 71 75 61 72 | 65 20 52 6f 6f 74 73 0d |al Squar|e Roots.|
|00000330| 0d 32 2e 20 52 61 74 69 | 6f 6e 61 6c 20 61 6e 64 |.2. Rati|onal and|
|00000340| 20 49 72 72 61 74 69 6f | 6e 61 6c 20 53 71 75 61 | Irratio|nal Squa|
|00000350| 72 65 20 52 6f 6f 74 73 | 0d 0d 32 2e 20 52 61 74 |re Roots|..2. Rat|
|00000360| 69 6f 6e 61 6c 20 61 6e | 64 20 49 72 72 61 74 69 |ional an|d Irrati|
|00000370| 6f 6e 61 6c 20 53 71 75 | 61 72 65 20 52 6f 6f 74 |onal Squ|are Root|
|00000380| 73 0d 0d 32 2e 20 52 61 | 74 69 6f 6e 61 6c 20 61 |s..2. Ra|tional a|
|00000390| 6e 64 20 49 72 72 61 74 | 69 6f 6e 61 6c 20 53 71 |nd Irrat|ional Sq|
|000003a0| 75 61 72 65 20 52 6f 6f | 74 73 0d 0d 32 2e 20 52 |uare Roo|ts..2. R|
|000003b0| 61 74 69 6f 6e 61 6c 20 | 61 6e 64 20 49 72 72 61 |ational |and Irra|
|000003c0| 74 69 6f 6e 61 6c 20 53 | 71 75 61 72 65 20 52 6f |tional S|quare Ro|
|000003d0| 6f 74 73 0d 0d 33 2e 20 | 41 70 70 72 6f 78 69 6d |ots..3. |Approxim|
|000003e0| 61 74 69 6e 67 20 49 72 | 72 61 74 69 6f 6e 61 6c |ating Ir|rational|
|000003f0| 20 53 71 75 61 72 65 20 | 52 6f 6f 74 73 0d 0d 33 | Square |Roots..3|
|00000400| 2e 20 41 70 70 72 6f 78 | 69 6d 61 74 69 6e 67 20 |. Approx|imating |
|00000410| 49 72 72 61 74 69 6f 6e | 61 6c 20 53 71 75 61 72 |Irration|al Squar|
|00000420| 65 20 52 6f 6f 74 73 0d | 0d 33 2e 20 41 70 70 72 |e Roots.|.3. Appr|
|00000430| 6f 78 69 6d 61 74 69 6e | 67 20 49 72 72 61 74 69 |oximatin|g Irrati|
|00000440| 6f 6e 61 6c 20 53 71 75 | 61 72 65 20 52 6f 6f 74 |onal Squ|are Root|
|00000450| 73 0d 0d 33 2e 20 41 70 | 70 72 6f 78 69 6d 61 74 |s..3. Ap|proximat|
|00000460| 69 6e 67 20 49 72 72 61 | 74 69 6f 6e 61 6c 20 53 |ing Irra|tional S|
|00000470| 71 75 61 72 65 20 52 6f | 6f 74 73 0d 0d 33 2e 20 |quare Ro|ots..3. |
|00000480| 41 70 70 72 6f 78 69 6d | 61 74 69 6e 67 20 49 72 |Approxim|ating Ir|
|00000490| 72 61 74 69 6f 6e 61 6c | 20 53 71 75 61 72 65 20 |rational| Square |
|000004a0| 52 6f 6f 74 73 0d 0d 33 | 2e 20 41 70 70 72 6f 78 |Roots..3|. Approx|
|000004b0| 69 6d 61 74 69 6e 67 20 | 49 72 72 61 74 69 6f 6e |imating |Irration|
|000004c0| 61 6c 20 53 71 75 61 72 | 65 20 52 6f 6f 74 73 0d |al Squar|e Roots.|
|000004d0| 0d 34 2e 20 55 73 69 6e | 67 20 74 68 65 20 50 79 |.4. Usin|g the Py|
|000004e0| 74 68 61 67 6f 72 65 61 | 6e 20 54 68 65 6f 72 65 |thagorea|n Theore|
|000004f0| 6d 0d 0d 34 2e 20 55 73 | 69 6e 67 20 74 68 65 20 |m..4. Us|ing the |
|00000500| 50 79 74 68 61 67 6f 72 | 65 61 6e 20 54 68 65 6f |Pythagor|ean Theo|
|00000510| 72 65 6d 0d 0d 34 2e 20 | 55 73 69 6e 67 20 74 68 |rem..4. |Using th|
|00000520| 65 20 50 79 74 68 61 67 | 6f 72 65 61 6e 20 54 68 |e Pythag|orean Th|
|00000530| 65 6f 72 65 6d 0d 0d 34 | 2e 20 55 73 69 6e 67 20 |eorem..4|. Using |
|00000540| 74 68 65 20 50 79 74 68 | 61 67 6f 72 65 61 6e 20 |the Pyth|agorean |
|00000550| 54 68 65 6f 72 65 6d 0d | 0d 34 2e 20 55 73 69 6e |Theorem.|.4. Usin|
|00000560| 67 20 74 68 65 20 50 79 | 74 68 61 67 6f 72 65 61 |g the Py|thagorea|
|00000570| 6e 20 54 68 65 6f 72 65 | 6d 0d 0d 34 2e 20 55 73 |n Theore|m..4. Us|
|00000580| 69 6e 67 20 74 68 65 20 | 50 79 74 68 61 67 6f 72 |ing the |Pythagor|
|00000590| 65 61 6e 20 54 68 65 6f | 72 65 6d 0d 0d 34 2e 20 |ean Theo|rem..4. |
|000005a0| 55 73 69 6e 67 20 74 68 | 65 20 50 79 74 68 61 67 |Using th|e Pythag|
|000005b0| 6f 72 65 61 6e 20 54 68 | 65 6f 72 65 6d 0d 0d 34 |orean Th|eorem..4|
|000005c0| 2e 20 55 73 69 6e 67 20 | 74 68 65 20 50 79 74 68 |. Using |the Pyth|
|000005d0| 61 67 6f 72 65 61 6e 20 | 54 68 65 6f 72 65 6d 0d |agorean |Theorem.|
|000005e0| 0d 35 2e 20 46 69 6e 64 | 69 6e 67 20 48 69 67 68 |.5. Find|ing High|
|000005f0| 65 72 20 52 6f 6f 74 73 | 0d 0d 35 2e 20 46 69 6e |er Roots|..5. Fin|
|00000600| 64 69 6e 67 20 48 69 67 | 68 65 72 20 52 6f 6f 74 |ding Hig|her Root|
|00000610| 73 0d 0d 35 2e 20 46 69 | 6e 64 69 6e 67 20 48 69 |s..5. Fi|nding Hi|
|00000620| 67 68 65 72 20 52 6f 6f | 74 73 0d 0d 35 2e 20 46 |gher Roo|ts..5. F|
|00000630| 69 6e 64 69 6e 67 20 48 | 69 67 68 65 72 20 52 6f |inding H|igher Ro|
|00000640| 6f 74 73 0d 0d 35 2e 20 | 46 69 6e 64 69 6e 67 20 |ots..5. |Finding |
|00000650| 48 69 67 68 65 72 20 52 | 6f 6f 74 73 0d 0d 35 2e |Higher R|oots..5.|
|00000660| 20 46 69 6e 64 69 6e 67 | 20 48 69 67 68 65 72 20 | Finding| Higher |
|00000670| 52 6f 6f 74 73 0d 0d 35 | 2e 20 46 69 6e 64 69 6e |Roots..5|. Findin|
|00000680| 67 20 48 69 67 68 65 72 | 20 52 6f 6f 74 73 0d 0d |g Higher| Roots..|
|00000690| 35 2e 20 46 69 6e 64 69 | 6e 67 20 48 69 67 68 65 |5. Findi|ng Highe|
|000006a0| 72 20 52 6f 6f 74 73 0d | 0d |r Roots.|. |
+--------+-------------------------+-------------------------+--------+--------+